提到寄生虫,人们很容易联想到寄生的动物或微生物。其实植物界中也有“寄生虫”。

地球上绝大多数植物为“自养型”,它们从土壤中吸取养分,依靠自身光合作用获取生长能量。然而在被子植物中,进化出了至少12类,近5000种寄生植物,它们“好吃懒做”,寄生在其它植物上并偷取营养。蛇菰科植物就是全寄生植物的典型代表之一。

理解此类植物的演化历程及生活机制,对探究物种起源、万物生长具有重要意义。9月21日,深圳华大生命科学研究院联合昆明植物所、英属哥伦比亚大学等单位,合作完成了两种蛇菰的基因组解析,揭示了其独特形态和特殊生活方式的背后机制,相关成果发表于国际期刊《自然-植物》(Nature Plants)。

(《自然-植物》官网截图)

据介绍,蛇菰虽形似蘑菇,却是实打实的高等植物,其主要器官为根茎和花。一般的寄生植物会把吸收营养的器官伸进宿主体内,而蛇菰却能将宿主的维管组织(有输导水分和营养的功能)诱导到自己体内,如同将别人家的水管连到自己家中。这种独特的寄生方式能帮助蛇菰更好地获取养分。

与自养植物相比,寄生植物发生了不同数量的基因丢失。根据过往发表的文章,大花草科植物寄生花(全寄生)丢失了约44%的基因、旋花科植物菟丝子(介于全寄生和半寄生之间)丢失了约11.7%的基因、列当科植物松蒿和马先蒿(半寄生)则丢失了约2.4%-3.0%的基因。

研究团队通过比较此次新组装的蛇菰科的两个物种——杯茎蛇菰和球穗蛇菰,与半寄生植物小红花寄生,以及如上提及的几种寄生植物,发现半寄生植物丢失了相对少量的基因,而全寄生的蛇菰和寄生花却发生了大量的基因丢失(分别为28%和38%),且两个类群丢失的基因大部分是相同的,这也是目前研究人员在植物中发现的最大程度的基因丢失。

“尽管蛇菰和寄生花形态不同,由不同的祖先独立进化到现在,但它们丢失的共同基因却分别占到各自丢失的60%和80%。”华大生命科学研究院博士陈晓丽补充道,“这两个类群很像大自然做了两次不同的实验,但是得到了非常类似的结果。我们推断,其它全寄生植物类群尽管形态各异,但也有可能发生相似的基因丢失。”

伴随着光合作用功能的丧失,蛇菰和寄生花丢失了几乎全部与此相关的基因;同时,与根部发育、氮的吸收、开花调节等重要功能相关的基因也发生了大量丢失;此外,一般植物会保留多个相似的基因用于信号传递、代谢或环境适应等,形成一些多基因家族,而蛇菰和寄生花在这些家族中却倾向于只保留一个基因。这从侧面展示了全寄生植物在进化历程中基因丢失的程度及方式,反映了基因丢失在进化中所发挥的的强大力量。

另一个有趣的发现是,蛇菰和寄生花丢掉了脱落酸主要合成通路的大部分基因,而此次研究却在蛇菰的花序中发现了脱落酸积累和响应基因的高表达。研究人员猜测,蛇菰可能直接利用了宿主中合成的脱落酸,这代表了寄生植物与宿主互作的一种全新的形式。

文章共同通讯作者、加拿大英属哥伦比亚大学教授Graham认为,“寄生植物的基因丢失大部分能与不需要的功能联系起来。但我们推断,有一些基因丢失对寄生植物来说是有益的,如上述脱落酸合成通路相关基因的丢失,能保证寄生植物与宿主保持生理上的同步,可能更有利于自身的存活。”

前文提到蛇菰能将宿主的维管组织诱导到自己体内,形成一种嵌合体。对宿主来说,与另一物种接触会导致较强的免疫反应,研究发现,水杨酸在宿主的根中积累,而蛇菰在二者交接处高表达了一些用于分解或负调节水杨酸的基因。研究人员推断,蛇菰可能通过减弱水杨酸的作用来降低宿主的免疫反应,这也是首次发现寄生植物与宿主之间会通过水杨酸来互相较量。

文章共同通讯作者、深圳华大生命科学研究院研究员刘欢认为:“此次研究揭示了寄生植物与宿主之间复杂的互作关系,有助于我们了解寄生植物的进化机制,对农业中特别是一些寄生杂草的控制有非常大的帮助。”

深圳华大生命科学研究院陈晓丽、方东明,中国科学院昆明植物所许宇星为该论文共同第一作者。深圳华大生命科学研究院刘欢,加拿大英属哥伦比亚大学Sean W. Graham 为论文共同通讯作者。该项目得到深圳市科技创新委员会(No. JCYJ20160331150739027、KCXFZ20201221173013035)基金的支持。该项目是万种植物基因组计划的一部分,同时也得到了中国国家基因库的支持。